Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(14): 6352-6366, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488577

ABSTRACT

We report the synthesis, structures, and magnetic and luminescence properties of a series of new mono- and dinuclear Er3+ complexes derived from sterically demanding aryloxide and fluorinated alkoxide ligands: [4-tBu-2,6-(Ph2CH)2C6H2O]3Er(THF) (1), [(C6F5)3CO]3Er(Me3SiOH) (2), [(C6F5)3CO]3Er[(Me3Si)2NH] (3), [(C6F5)3CO]3Er(C6H5CH3) (4), [(C6F5)3CO]3Er(o-Me2NC6H4CH3) (5) and {[Ph(CF3)2CO]2Er(µ2-OC(CF3)2Ph)}2 (6). In compounds 1, 2, and 4, the Er3+ ion is four-coordinated and adopts a distorted trigonal pyramidal geometry, while in 3, 5, and 6, the coordination geometry of Er3+ is impacted by the presence of several relatively short Er⋯F distances, making them rather 6-coordinated. All compounds behave as field-induced Single Molecule Magnets (SMMs) and exhibit an Er3+ characteristic near infrared (NIR) emission associated with the 4I13/2 → 4I15/2 transition with a remarkably long lifetime going up to 73 µs, which makes them multifunctional luminescent SMMs. The deconvolution of the NIR emission spectra allowed us to provide a direct probe of the crystal field splitting in these compounds, which was correlated with magnetic data.

2.
Inorg Chem ; 63(4): 1867-1878, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38237143

ABSTRACT

LnCl3(THF)3 (Ln = Y, La ÷ Nd, Sm ÷ Lu) readily react with the tridentate 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me3tach) ligand to form mono- or binuclear lanthanide trichloride complexes, depending on the stoichiometry of the reaction and the ionic radius of the metal: mononuclear pseudosandwich [LnCl3(Me3tach)2], (Ln = Y, La ÷ Ho) or binuclear complexes [Ln2Cl6(Me3tach)3], or [LnCl3(Me3tach)(THF)]2 (Ln = Sm, Tb). Detailed analysis of the NMR data of [LnCl3(Me3tach)2] complexes with paramagnetic lanthanide ions showed that their structures remained unchanged in the toluene solution. A series of isomorphous complexes [LnCl3(Me3tach)(Py)2] (Ln = La, Sm, Tb, Er, Lu; Py = pyridine) have been obtained by the recrystallization of either mononuclear or binuclear complexes from pyridine. Complexes of terbium and europium ions with the Me3tach ligand exhibit relatively high quantum yields of metal-centered luminescence (0.39 and 0.32, respectively).

3.
Dalton Trans ; 52(47): 17861-17872, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37975537

ABSTRACT

A joint structural and spectroscopic study of simple bis-cyclometataled rhodium(III) and iridium(III) complexes with 2-phenylpyridine and aromatic ß-diketones (dibenzoylmethane, benzoylacetone, benzoyltrifluoroacetone, and 2-thenoyltrifluoroacetone) reveals an interplay between the solid-state emission efficiency and crystal packing peculiarities of the complexes. Although the prepared rhodium(III) cyclometalates are isostructural with iridium(III) analogues, different types of π-π interactions are responsible for the aggregation-induced emission (AIE) of the complexes depending on the metal ion. For iridium(III) complexes, pyridyl-pyridyl contacts are essential for AIE because they lower the energy of the emissive metal-to-ligand charge transfer state below that of the non-emissive state located at the ancillary ligand. Enabled by phenyl-pyridyl interactions partially blocking the population of non-emissive d-d states, solid-state phosphorescence enhancement is successfully achieved in a rhodium(III) complex with ancillary benzoyltrifluoroacetone, which is the first example of a rhodium complex exhibiting AIE.

4.
Dalton Trans ; 52(47): 17911-17927, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37982138

ABSTRACT

The first Yb complexes comprising a quinoline-2-carboxylate (quinaldinate, Q-) ligand, namely 1D-polymeric [Yb(acac)2(Q)]n (1, acac- is the acetylacetonate (pentane-2,4-dionate) anion) and mononuclear [Yb(acac)2(Q)(Phen)] (2, Phen is 1,10-phenanthroline), are reported. The bifunctionality of both complexes as field-induced single-molecule magnets (SMMs) and near IR luminophores has been revealed. The SMM properties of 1 and 2 have been discussed in terms of the geometry and composition of the coordination environment. Also, 1 is the first example of 1D-polymeric SMMs with the capped octahedral surrounding of Yb3+. The photoluminescence quantum yields (PLQYs) of 1 and 2 are 2 and 4%, respectively. The origins of this difference are discussed. Surprisingly, the PLQY value of 2 is high for compounds comprising a lot of C-H vibrational quenchers, being the highest one for reliably characterized Yb ß-diketonate complexes, and surpassing those for complexes with a broad range of anionic ligands. In this respect, the role of the Phen ligand is to tune the coordination mode of Q- thereby decreasing the energy of coordinating C-O oscillators rather than to act as a typical antenna ligand. These results can give rise to an alternative route to elaborate efficient Yb-based luminophores via the substitution of the ß-diketonate ligands controlled by the introduction of appropriate neutral ligands.

5.
Molecules ; 28(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37764316

ABSTRACT

A series of cyclometalated complexes of ruthenium (II) with four different substituents in the aryl fragment of benzimidazole was synthesized in order to study the effect of substituent donation on the electronic structure of the substances. The resulting complexes were studied using X-ray diffraction, NMR spectroscopy, MALDI mass spectrometry, electron absorption spectroscopy, luminescence spectroscopy, and cyclic voltammetry as well as DFT/TDDFT was also used to interpret the results. All the complexes have intense absorption in the range of up to 700 nm, the triplet nature of the excited state was confirmed by measurement of luminescence decay. With an increase in substituent donation, a red shift of the absorption and emission bands occurs, and the lifetime of the excited state and the redox potential of the complex decrease. The combination of these properties shows that the complexes are excellent dyes and can be used as photosensitizers.

6.
Dalton Trans ; 52(19): 6435-6450, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37092600

ABSTRACT

The synthesis, structure, optical and redox properties as well as photovoltaic studies of iridium(III) complexes with cyclometalated 2-arylbenzimidazoles decorated with various polyaromatic fragments and an ancillary aromatic ß-diketone are reported. Despite the strong preference of the iridium(III) ion to form bis- or tris-cyclometalated complexes in which the metal participates in five-membered metallacycles, the cyclometalation of the benzimidazole ligands containing rigid π-extended systems yields dimeric complexes containing strained five- or six-membered metallacycles and allows for generating an extremely rare monocyclometalated complex. X-ray crystallography shows that the steric strain observed in the dimers is retained in heteroleptic diketonate complexes which is also corroborated by gas-phase DFT calculations. While emission maxima and redox potentials of the heteroleptic complexes exhibit just a moderate variation upon the change of the cyclometalated ligands, the extension of the π-system of the benzimidazole ligands give the complexes remarkable light absorption in the visible spectral range, which meets the requirements for application in dye-sensitized solar cells. At the titania photoanodes, these iridium dyes retain their optical properties and exhibit power conversion efficiencies under standard AM 1.5 G conditions comparable to those of other iridium-based sensitizers. These results demonstrate that the size and position of the π-extended fragment in cyclometalated ligands can modulate not only the electronic structure of the corresponding iridium(III) complexes, but also affect their composition, structure and reactivity that may find implications in future design of emerging iridium dyes, emitters and catalysts.

7.
Materials (Basel) ; 16(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36770249

ABSTRACT

NIR emitting OLEDs (organic light-emitting diodes) with high photoluminescence quantum yields were developed on the basis of fluorinated 1,3-diketonate coordination compounds of the Nd3+ ion. Both thermal evaporation and spin-coating techniques were successfully employed for active layer deposition resulting in electroluminescence quantum yields up to 1.38·10-2%. Blueish-green emission from exciplex and electroplax formations was almost suppressed with the topology optimization of the cell.

8.
Polymers (Basel) ; 15(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36850151

ABSTRACT

A new strategy for the easy polymerization of anionic [Ln(Qcy)4]- (HQcy-4-(cyclohexanecarbonyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) into two-dimensional layers of [AgLn(Qcy)4]n (Ln = Sm, Eu, Gd, Tb and Dy) is proposed by binding the single molecular anions [Ln(Qcy)4]- to silver cations through the coordination of the pyridinic nitrogen atoms of the pyrazolonate rings. The luminescent properties of [AgLn(Qcy)4]n have been studied in detail, and it was shown that the previously described low photoluminescence quantum yield (PLQY) of [Eu(Qcy)4]- is due to Ligand-To-Metal Charge Transfer (LMCT) quenching, which is effectively suppressed in the heterometallic [AgEu(Qcy)4]n polymer. Sensibilization coefficients for H3O[Eu(Qcy)4], [AgEu(Qcy)4]n, and H3O[Sm(Qcy)4] complexes (n ≈ 1) were estimated via theoretical analysis (also by using Judd-Ofelt theory for Sm3+) and PLQY measurements.

9.
Phys Chem Chem Phys ; 24(41): 25307-25315, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36226548

ABSTRACT

The interaction between diphenylacetylene and dichlorophenylphosphine under various conditions is a simple method for the preparation of pentaphenylphosphole derivatives exhibiting fluorescence properties. Depending on the electronic state of the various centers of the phospholic structure, it was possible to obtain molecules with fluorescence, as in the blue area for 1,2,3,4,5-pentaphenyl-2,5-dihydro-phosphole-1-oxide (H2PPPO), in the yellow area for 1,2,3,4,5-pentaphenylphosphole-1-oxide (PPPO) and in the cyan area for 1,2,3,4,5-pentaphenylphosphole (PPP). The effect of the structure and π-conjugation on the optical properties of these compounds was studied using PPP derivatives as examples. Unusual changes in the optical properties of PPP derivatives in solution and in the crystalline state are explained. In the case of agglomeration of PPPO and PPP molecules, the effect of aggregation-induced emission (AIE) was observed to have weak fluorescence in solution and strong fluorescence in the aggregated state. However, for H2PPPO, the AIE effect remains mild. With the help of experimental studies, supported by theoretical calculations, the main mechanism of the optical properties of pentaphenylphosphole derivatives has been revealed. It was observed that the intramolecular motions of PPPO and PPP are more limited in the solid state than the motions of H2PPPO, which is associated with less conjugation of the phenyl rotors of H2PPPO. The analysis of the structure and distribution of electron density showed why hydrogenation of the phosphole ring leads to a sharp change in the optical properties of pentaphenylphosphole derivatives, while the oxidation of phosphorus does not lead to the disappearance of the AIE effect and to a lesser extent affects the change in the fluorescence wavelength. Thus, it was shown how the regulation of various structural features of the phospholic ring helps to control the optical properties of such compounds.

10.
Dalton Trans ; 51(38): 14673-14685, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36098070

ABSTRACT

A series of 15 lanthanide-containing coordination polymers, both 3D- and 2D-networks, as well as complexes of Ln-trichlorides with 3-(3-pyridyl)pyrazole (3-PyPzH), were synthesized. A large structural diversity is observed depending on the ligand content: 3∞[Ln(3-PyPzH)Cl3], Ln = Eu and Gd, of sra topology, 2∞[Sm(3-PyPzH)Cl3], 2∞[Ln2(3-PyPzH)3Cl6]·2solv, Ln = Eu3+, Tb3+, Dy3+, Ho3+ and Er3+, solv = Tol and MeCN, of sql topology and 2∞[Ln(3-PyPzH2)Cl4], Ln = La and Nd, of hcb topology with salt like complexes of the formula [(3-PyPzH2)][Ln(3-PyPzH)2Cl4], Ln = Eu, Tb, Dy and Ho. The products were characterized by single-crystal and powder X-ray diffraction, high-temperature X-ray diffraction, differential thermal analysis and thermogravimetry (DTA/TG) combined with mass spectrometry, differential scanning calorimetry (DSC), IR-spectroscopy, UV-visible spectrophotometry, photoluminescence spectroscopy, and magnetic susceptibility. Absorption spectroscopy shows ion-specific 4f-4f transitions that can be assigned to Sm3+, Eu3+, Dy3+, Ho3+ and Er3+ in a wide range from the UV-VIS to NIR region. An excellent antenna effect through ligand-metal energy transfer was observed in 2∞[Tb2(3-PyPzH)3Cl6]·2solv, leading to high efficiency of the luminescence indicated by a quantum yield up to 76%. Direct current magnetic susceptibility studies reveal the absence of interatomic interaction for Dy3+ and Er3+ and weak ferromagnetic interaction for Ho3+. Thermal analysis shows good stability up to 365 °C for 2∞[Ho2(3-PyPzH)3Cl6]·2MeCN.

11.
Inorg Chem ; 61(23): 8670-8684, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35650511

ABSTRACT

Imidoylamidinate-based heteroleptic bis(2-phenylbenzothiazole)iridium(III) and -rhodium(III) complexes [(bt)2M(N∩N)] (bt = 2-phenylbenzothiazole, N∩N = N'-(benzo[d]thiazol-2-yl)acetimidamidyl (Ir1 and Rh1), N'-(6-fluorobenzo[d]thiazol-2-yl)acetimidamidyl (Ir2), N'-(benzo[d]oxazol-2-yl)acetimidamidyl (Ir3), N'-(1-methyl-1H-benzo[d]imidazol-2-yl)acetimidamidyl (Ir4); yields 70-84%) were obtained by the reaction of the in situ-generated solvento-complex [(bt)2M(NCMe)2]NO3 and benzo[d]thia/oxa/N-methylimidozol-2-amines in the presence of NaOMe. Complexes Ir1-4 exhibited intense orange photoluminescence, reaching 37% at room temperature quantum yields, being immobilized in a poly(methyl methacrylate) matrix. A photophysical study of these species in a CH2Cl2 solution, neat powder, and frozen (77 K) MeOC2H4OH-EtOH glass matrix─along with density-functional theory (DFT), ab initio methods, and spin-orbit coupling time-dependent DFT calculations─verified the effects of substitution in the imidoylamidinate ligands on the excited-state properties. Electrochemical (cyclic voltammetry and differential pulse voltammetry) and theoretical DFT studies demonstrated noninnocent behavior of the imidoylamidinate ligands in Ir1-4 and Rh1 complexes due to the significant contribution coming from these ligands in the HOMO of the complexes. The iridium(III) species exhibit a ligand (L, 2-phenylbenzothiazole)-centered (3LC), metal-to-ligand (L', imidoylamidinate) charge-transfer (3ML'CT,3MLCT) character of their emission. The imidoylamidinate-based iridium(III) species were proved to be effective as the emissive dopant in an organic light-emitting diode device, fabricated in the framework of this study.

12.
Phys Chem Chem Phys ; 23(45): 25748-25760, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34755733

ABSTRACT

A series of europium and gadolinium complexes comprising a ß-diketone moiety modified with a fluorinated side-group and thiophene ring have been designed and synthesized and a comparative study of their luminescence properties has been carried out. In this study, when the methyl side group was modified by sequential addition of fluorine substituents and then the perfluorinated carbon chain was extended up to n-C8F17 by adding CF2 fragments, it transpired that the non-radiative energy processes are significantly suppressed in structurally more rigid polyfluorinated ß-diketonate compounds of the series as C-H oscillators are replaced with low-energy C-F oscillators. The impact of other electron-withdrawing and electron-donating substituents on the spectroscopic and photophysical properties of the complexes in the present study has also been observed. Despite the presence of low-lying ligand-to-metal charge transfer states, the fluorinated Eu3+ complexes proved to be bright luminophores capable of delivering ca. 50% quantum yield under UV radiation. The role of fluorination and carbon chain length was examined by using experimental spectroscopic methods and the results obtained were largely in good agreement with theoretical calculations (Judd-Ofelt theory analysis, and semiempirical quantum chemistry calculations) supporting our key experimental findings.

13.
Chemistry ; 27(67): 16634-16641, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34613634

ABSTRACT

Homoleptic, 3D coordination polymers of the formula 33 ∞ [Ln(3-PyPz)3 ] and 3 ∞ [Ln(4-PyPz)3 ], (3-PyPz)- =3-(3-pyridyl)pyrazolate anion, (4-PyPz)- =3-(4-pyridyl)pyrazolate anion, both C8 H6 N3 - , Ln=Sm, Eu, Gd, Tb, Dy, were obtained as highly luminescent frameworks by reaction of the lanthanide metals (Ln) with the aromatic heterocyclic amine ligands 3-PyPzH and 4-PyPzH. The compounds form two isotypic series of 3D coordination polymers and exhibit fair thermal stability up to 360 °C. The luminescence properties of all ten compounds were determined in the solid state, with an antenna effect through ligand-metal energy transfer leading to high efficiency of the luminescence displayed by good quantum yields of up to 74 %. The emission is mainly based on ion-specific lanthanide-dependent intra 4 f-4 f transitions for Tb3+ : green, Dy3+ : yellow, Sm3+ : orange-red, Eu3+ : red. For the Gd3+ -containing compounds, the yellow emission of ligand triplet-based phosphorescence is observed at room temperature and 77 K. Co doping of the Gd-containing frameworks with Eu3+ and Tb3+ allow further shifting of the chromaticity towards white light emission.

14.
Molecules ; 26(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299571

ABSTRACT

A series of heterometallic carboxylate 1D polymers of the general formula [LnIIICd2(piv)7(H2O)2]n·nMeCN (LnIII = Sm (1), Eu (2), Tb (3), Dy (4), Ho (5), Er (6), Yb (7); piv = anion of trimethylacetic acid) was synthesized and structurally characterized. The use of CdII instead of ZnII under similar synthetic conditions resulted in the formation of 1D polymers, in contrast to molecular trinuclear complexes with LnIIIZn2 cores. All complexes 1-7 are isostructural. The luminescent emission and excitation spectra for 2-4 have been studied, the luminescence decay kinetics for 2 and 3 was measured. Magnetic properties of the complexes 3-5 and 7 have been studied; 4 and 7 exhibited the properties of field-induced single-molecule magnets in an applied external magnetic field. Magnetic properties of 4 and 7 were modelled using results of SA-CASSCF/SO-RASSI calculations and SINGLE_ANISO procedure. Based on the analysis of the magnetization relaxation and the results of ab initio calculations, it was found that relaxation in 4 predominantly occurred by the sum of the Raman and QTM mechanisms, and by the sum of the direct and Raman mechanisms in the case of 7.

15.
Molecules ; 26(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062750

ABSTRACT

Three novel lanthanide complexes with the ligand 4,4-difluoro-1-(1,5-dimethyl-1H-pyrazol-4-yl)butane-1,3-dione (HL), namely [LnL3(H2O)2], Ln = Eu, Gd and Tb, were synthesized, and, according to single-crystal X-ray diffraction, are isostructural. The photoluminescent properties of these compounds, as well as of three series of mixed metal complexes [EuxTb1-xL3(H2O)2] (EuxTb1-xL3), [EuxGd1-xL3(H2O)2] (EuxGd1-xL3), and [GdxTb1-xL3(H2O)2] (GdxTb1-xL3), were studied. The EuxTb1-xL3 complexes exhibit the simultaneous emission of both Eu3+ and Tb3+ ions, and the luminescence color rapidly changes from green to red upon introducing even a small fraction of Eu3+. A detailed analysis of the luminescence decay made it possible to determine the observed radiative lifetimes of Tb3+ and Eu3+ and estimate the rate of excitation energy transfer between these ions. For this task, a simple approximation function was proposed. The values of the energy transfer rates determined independently from the luminescence decays of terbium(III) and europium(III) ions show a good correlation.

16.
Molecules ; 26(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066150

ABSTRACT

New fluorescent D-A-D dyes containing 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole as a donor unit and 2,1,3-benzochalcogenadiazoles as an electron-withdrawing group were synthesized. The photoluminescent and electroluminescent properties of novel dyes for fluorescent OLED application were investigated. It was demonstrated that the replacement of lightweight heteroatoms by heavier ones enables the fine tuning of the maximum emission without significantly reducing the luminescence quantum yield. The maximum quantum yield value of 62.6% for derivatives based on 2,1,3-benzoxadiazole (1a) in cyclohexane was achieved. Two devices with the architecture of glass/ITO/PEDOT-PSS/poly-TPD/EML/TPBi/LiF/Al (EML = emitting layer) were fabricated to check the suitability of the synthesized compounds as a single active emission layer in OLED. These OLEDs exhibited clear red electroluminescence of the dyes with the maximum current efficiency of 0.85 Cd/A.

17.
Chemistry ; 27(35): 9180-9192, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33871132

ABSTRACT

Hydroxyisophthalic acids are valuable polytopic ligands for the design of functional materials based on coordination polymers due to the variety of charges and coordination modes they possess. Herein, we describe the synthesis, thermal stability, nonlinear optical (NLO) and spectroscopic properties of five novel coordination compounds, [K2 L(H2 O)2 ], [MgL(H2 O)2 ] ⋅ 3H2 O, [CaL(H2 O)3 ], [SrL(H2 O)3 ] ⋅ H2 O, [BaL(H2 O)(H2 O)5 ], and one salt, (NH4 )2 L ⋅ 2H2 O, with 4,5,6-trihydroxyisophthalic acid (H2 L), which has not been tested in assembling crystalline coordination networks before. The peculiarities of the structural organization of the compounds were analyzed and compared with those for other hydroxyisophthalates. The coordination properties of hydroxyisophthalic acids were studied from the topological point of view, and a comparative topological analysis of coordination and H-bonded networks was performed. Structural correlations revealed in this study could be useful for the design of hydroxyisophthalate-based coordination networks, including porous metal-organic frameworks, proton conductors, and NLO materials.

18.
Dalton Trans ; 50(20): 6889-6900, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33913992

ABSTRACT

A series of bis-cyclometalated iridium(iii) complexes with 2-arylphenanthroimidazole "antenna" ligands containing electron-donor or withdrawing substituents and a more flexible ancillary aromatic ß-diketone bearing the "anchoring" carboxymethyl function has been prepared. Thorough X-ray study of the complexes revealed significant structural strains caused by bulky cyclometalated 2-arylphenanthroimidazoles resulting in dramatic distortions of the iridium octahedron and even in twist of the phenanthrene fragment. The crystal data were corroborated by gas-phase DFT calculations whereby the geometry of the complexes was distorted in the same way. While redox potentials, absorption and emission maxima of the complexes displayed expected change upon the variation of the electron-donating ability of the cyclometalated ligands, the complexes readily exchanged the bidentate ancillary ligand in the presence of a negligible amount of protons that was inspected in solution by UV-Vis spectroscopy. Moreover, after hydrolysis of the carboxymethyl group the resulting complexes readily react with the surface of titanium dioxide giving unique binuclear structures in which the deprotonated carboxy group of the coordinated ß-diketonate binds the second bis-cyclometalated unit by forming a four-membered metallacycle. Though the enhanced reactivity of the complexes is contrary to the common idea of the high inertness of iridium(iii) compounds it can be seen as a consequence of the interplay between the steric hindrance induced by the ligands and the strong preference of the iridium(iii) ion for octahedral geometry. This study demonstrates that the use of bulky ligands provides access to light-harvesting iridium(iii) complexes with required extent of lability which may be promising as photocatalysts and biologically active molecules.

19.
Materials (Basel) ; 13(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322115

ABSTRACT

Varying the temperature of the reaction of [{Cd(pfb)(H2O)4}+n·n(pfb)-], [Ln2(pfb)6(H2O)8]·H2O (Hpfb = pentafluorobenzoic acid), and 1,10-phenanthroline (phen) in MeCN followed by crystallization resulted in the isolation of two type of products: 1D-polymers [LnCd(pfb)5(phen)]n·1.5nMeCN (Ln = Eu (I), Gd (II), Tb (III), Dy (IV)) which were isolated at 25 °C, and molecular compounds [Tb2Cd2(pfb)10(phen)2] (V) formed at 75 °C. The transition from a molecular to a polymer structure becomes possible because of intra- and intermolecular interactions between the aromatic cycles of phen and pfb from neighboring tetranuclear Ln2Cd2 fragments. Replacement of cadmium with zinc in the reaction resulted in molecular compounds Ln2Zn2 [Ln2Zn2(pfb)10(phen)2]·4MeCN (Ln = Eu (VI), Tb (VIII), Dy (IX)) and [Gd2Zn2(pfb)10(H2O)2(phen)2]·4MeCN (VII). A new molecular EuCd complex [Eu2Cd2(pfb)10(phen)4]·4MeCN (X)] was isolated from a mixture of cadmium, zinc, and europium pentafluorobenzoates (Cd:Zn:Ln = 1:1:2). Complexes II-IV, VII and IX exhibit magnetic relaxation at liquid helium temperatures in nonzero magnetic fields. Luminescent studies revealed a bright luminescence of complexes with europium(III) and terbium(III) ions.

20.
Molecules ; 25(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872237

ABSTRACT

Organophosphate-chloride complexes [{(2,6-iPr2C6H3-O)2POO}2LnCl(CH3OH)4]·2CH3OH, Ln = Nd (1), Eu (2), Gd (3), and Tb (4) have been obtained and structurally characterized. Their reaction with 2,2':6',2″-terpyridine leads to the formation of 1:1 adducts ([{(2,6-iPr2C6H3-O)2POO}2LnCl(terpy)(H2O)2(CH3OH)], Ln = Eu (5), Gd (6), Tb (7) with exception of Nd, where tris-diisopropylphenylphosphate complex [{(2,6-iPr2C6H3-O)2POO}3Nd) (terpy)(H2O)(CH3OH)] (8) was obtained due to the ligand metathesis. A bright luminescence observed for the Eu and Tb organophosphate complexes is the first example of an application of organophosphate ligands for 4f-ions luminescence sensitization. Photophysical properties of all complexes were analyzed by optical spectroscopy and an energy transfer scheme was discussed. A combination of two types of ligands into the coordination sphere (phosphate and phenanthroline) allows designing the Eu surrounding with very high intrinsic quantum yield QEuEu (0.92) and highly luminescent Ln complexes for both visible and near-infrared (NIR) regions.


Subject(s)
Lanthanoid Series Elements/chemistry , Luminescent Agents/chemistry , Organophosphates/chemistry , Chemical Phenomena , Hydrogen Bonding , Lanthanoid Series Elements/chemical synthesis , Ligands , Luminescence , Luminescent Agents/chemical synthesis , Models, Molecular , Molecular Structure , Spectrum Analysis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...